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other two chelate rings are arranged in the crystal in 
such a manner as to prevent the existence of a similar 
lattice wave or mode. The reproducibility of the dif- 
fuse patterns with temperature cycling together with 
the packing arrangement suggest the interpretation that 
the large anisotropic temperature parameters arise 
from the thermal motion rather than a slight disorder 
in the molecular packing is correct. 
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tion, Drs F. H. Kruse (Los Alamos Scientific Labora- 
tory) and J. M. Stewart (University of Maryland) for 
their assistance with computer codes, Drs H. Mont- 
gomery (Canadian Services College, Royal Roads) and 
J. R. Brathovde (N.S.F.) for their suggestions and 
stimulating discussions and Mrs B. Schneider for her 
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N--I 
qhe intensity equation I(~0) = Nspur VF + ,r ( N -  m) spur VFQ m + conj. for X-rays diffracted by a one- 

m=l 
dimensionally disordered crystal has been solved by three methods, viz. (i) by using the inverse matrix 
( 1 -  Q)-I, (ii) by diagonalizing Q by the similarity transformation OQO -1 and by using the solutions 
of a characteristic equation det ( y l - Q ) =  0 and a set of simultaneous equations with respect to 

g 
by's, 27 ~y~' = Bin=spur VFQ m (m=0, 1, • • . ,  R -1 ) ,  and (iii) by using Bm and the relation between 

v=l 
roots and coefficients of the characteristic equation without solving these equations explicitly. These 
methods should be applied to the problem only after the order of matrices has been reduced to lower 
order by considering the symmetry character involved in the matrices. 

Explicit expressions are given for three cases, namely the case of different thickness, that of equal 
thickness, and that of displacement stacking faults. In the case of displacement stacking faults, the 
three-dimensional Patterson function is given with respect to the distribution of origins of layers. 
The result is compared with that obtained by Allegra. 

Introduction 

The intensity of X-rays diffracted by a one-dimension- 
ally disordered crystal such as SiC, CdBr2, CdI2, some 
alloys of the Laves phase, many other alloys and metals 
showing the stacking faults between cubic and hexa- 

gonal close-packed structures, and some kinds of anti- 
phase domain structures and minerals, has been studied 
by many researchers, for example, Wilson (1942, 1943), 
H endricks & Teller (1942), Zachariasen (1947), Jagod- 
zinski (1949 a, b, c, 1954), M6ring (1949), Paterson 
(1952), Kakinoki & Komura (1952; 1954 a, b), Gevers 
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(1952; 1954 a, b), Warren & Warekois (1955), and 
Warren (1959). 

Of the intensity equations given by them, the most 
general one, in a matrix form, was given first by 
Hendricks & Teller (1942) and also by Kakinoki & 
Komura (1952). It is 

N - - 1  

I(qO = NBo + Z ( N -  m)Bm + conj., Bm= spur VFQ m . 
m = l  (1) 

This can be rewritten, in its special cases mentioned 
below, 

N - - I  

I(~o) = NJo + ~, ( N -  m)e-im~Jm + conj., 
m=l Jm=spur VFpm (2) 

o r  
N - - I  

l(¢p)= Vo V ~ { N + Z ( N -  m)e-i m~ Tm + co nj . }, 
m = l  

Tm= spur eFP m and To = 1 (3) 

when the intensity is expressed in electron units. The 
notation in equations (1), (2) and (3) is as follows: 

N is the number of layers; 
~0 =2~(;  
( s -  s0)/2 = ~a* + r/b* + ~e* (scattering vector); 
So and s are unit vectors along the incident and the 

scattered directions, respectively; 
a and b lie in the layer and e is normal to it; 
conj. means the complex conjugate of the foregoing 

term; 

and V, F, P, ~ and Q are such matrices as 

(V)j~= V~V~ and (F)~j=fi&j 
. . .  (VF),.i =A v, v7 

(4) 
(P)ij=Pij and (~)ij=e-i~t&j 

. ' .  (Q)ij .=(oP)ij= Pije-i*i 

ei = exp {2rci(u~ + v~r/)) 

Ui = uia  + r ib  

where 

Vt 
s~ 

(5) 

/',j 

¢pi 

is Kronecker's delta; 
is the layer form factor of the layer i; 
is the probability of finding the layer i at any 
position and hereafter simply called the existence 
probability of V~; 
is the probability of finding the layer j after the 
layer i and hereafter simply called the continuing 
probability of Vj after Vl; 
is the phase shift due to the thickness of the 
layer i. 

Equation (1) differs from equation (2) with respect 
to the point that the thicknesses of layers are different 
from each other for the former while they are all the 
same for the latter. In the former case, denoting the 
thicknesses of a standard layer and the layer i by e and 
e~, respectively, ei can be expressed 

ci =pie (6) 

and hence the parameters ( and (l along c* and c~', 
respectively, are connected with each other by 

~i=/zi( (7) 
from which 

foi = 2rc(~ = 2rc/1~ = / ~ 0 .  (8) 

In the latter case/zi is always unity and hence 

= e-i~l, Q = e-ivP (9) 

where 1 is a unit matrix. Therefore equation (1) can 
be rewritten as equation (2). 

As in the case of the stacking faults between cubic and 
hexagonal close-packed structures, when the atomic 
arrangements within the layers are all the same but 
their origins are shifted by vectors ui parallel to the 
layer, Vt can be expressed 

V~= Vo exp {2rri(ui~ + v~rl) }= Voei (10) 

where V0 is the layer form factor for the atomic arran- 
gement common to them. In such a case equation (2) 
can be rewritten as equation (3). 

For convenience, the three cases corresponding to 
equations (1), (2) and (3) will be hereafter called the 
cases of different thickness, equal thickness, and 
displacement stacking faults, respectively. 

For the existence probabilities fi and the continuing 
probabilities Pi~ there should be such relations as 

r r 

X fi  = 1, Z Pq = 1, Z fiPll =ft  (11) 
i=1 j = l  i=1 

where r is the number of kinds of layer. If we introduce 

(M)i~= 1, (H)lj = (MF)Ij =f i  

the relations in equation (11) are included in the fol- 
lowing matrix relations: 

spur H = s p u r F = l ,  P M = M ,  I - I P = H .  (12) 

Of these relations the last is important as it shows the 
consistent relations between fi 's and Pij's and hence 
fi 's  can be expressed in terms of Plj's. 

The intensity equations (1), (2) and (3) are valid 
not only for the case where there are faults in the 
stacking of layers, but also for the case where there is 
no faulting and hence the crystal has a regular 
periodicity, each Pij, in such a case, being either 1 or 
0. It is important to examine all possible kinds of 
regular structure which can be derived from any set 
of Pij's. 

As was done by Jagodzinski (1949), the 'Reich- 
weite' is defined to be s when the continuing probabi- 
lity Pij depends not only on the layer i but also on the 
combinations of the preceding s layers including the 
layer i. Equations (1), (2) and (3) were derived first 
for the case of s = 1, but, as we have shown, they are 
also valid for the case of any values of s. When 
s = 0 we have only to put P = H (Kakinoki & Komura, 
1952), and when s > 2  we have only to divide layers 
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belonging to V~ into l=r  s-~ subgroups according to 
the combinations of ( s -1)  antecedent layers before 
V~. Corresponding to such an extension, the order of 
matrices increases from r to R = r l = r  s and they are 
expressed 

V ~  
( V~ VIM 1 

v v M, 

V* VIM , 

V~ V~M, . . . . . .  V~ V,M, \ 
V~ V2M , . . . . . .  V~ VrM t ) • " (Mt)~t = 1 

V* V~Mt . . . . . .  V* r VrM , R 

p =  

F ~___ . - -  ° .  , 

R Fr R 

t e-i¢~ lle-l¢" It 

e -lCr Iz ) R 

( P H  P12  . . . . . .  PIR\  / P i l e 1 2  . . . . . .  P l r \  

P2x P22 . . . . . .  ..P2R) = (P21P2z ..P2r) .(13) 

For details, the original paper (Kakinoki & Komura 
(1954a) should be referred to. 

The present paper will show, in a general form, 
three methods of solution for the intensity equations 
(1), (2) and (3). They can be applied to many kinds of 
stacking fault problems found in, for example, stack- 
ing faults between cubic and hexagonal close-packed 
sructures, Laves phases, anti-phase domain structures, 
some kinds of martensitic transformation, minerals, 
etc. But individual applications will be successively 
reported later and hence the present paper is a general 
introduction to them. 

where D(~0) is the diffuse term and H(~o) the higher 
term which can be usually neglected except for the 
case when N is very small and ~o is near the maximum 
of D(~0) (Mrring 1949; Kakinoki & Komura, 1952). 
If each P~j is 0 or 1 and hence the crystal has a regu- 
lar periodicity, D(~o)=0 and H(tp) becomes the Laue 
function. 

D'(~o) in equation (14c) can be further calculated as 

R R 
spur VFN = 2; Zf~ViV~Nj l /de t ( l -Q)  

D'(cp)= de t ( l -Q)  i=1 j=1 
(15a) 

det ( l -  Q) 

- -  Q21 1 - Qz2 . . . . . .  - Q2R 
v 7  • • 

- Qm - QR2 . . . . . .  1-- QRR 

1 -  Qax - Q12 . . . . . .  - QaR \ 

f l v l  A v ~  + v ~  • • : v R  UR ) 
-- QR1 - QR2 . . . . . .  1 --!QRR / 

. . . . .  

(15b) 

(16) where (N)~j = Nj~. 

For the cases of equal thickness and displacement 
stacking faults ( ! -Q)- I  becomes 

(1- Q)-I = ei,(e~,l_ p)-i (17) 

and hence D(~o) and H(~p) become 

{ D(~0) = e l* spur VF(e~*I- p)-i + conj. - Jo 
H(~0) = spur VF(e-~lv~P N+I - P)d*(d*l-  p)-z + conj. 

(18) 
for the case of equal thickness and 

{ D(~0)= VoV~{e ~' spur ~F(d~l-P)-I + conj. - 1} 
H(~p) = V0 V~ {spur ~F(e-~N~°P N+I - P)ei*(e~'l- p)-2 

+conj.} (19) 

for the case of displacement stacking faults. 

The first method o f  solut ion 

As was shown by Kakinoki & Komura (1952) and 
later noted by Allegra (1961), if de t ( l -Q)~ 0  there 
should be an inverse matrix (1-Q)-t ,  the ij element of 
which is Njddet (1-Q) where Nj~ is the cofactor of 
the fi element of det (1-Q). In such a case equation 
(1) becomes 

I(fo) = ND(q)) + H(~o) (14a) 

{ D(~o)= D'(~o)+conj.- Bo (14b) 
D'(~o) = spur VF(I-  Q) -1 (14c) 

H(e )=spurVF(QN+l -Q) ( l -Q) -2+con j .  (14d) 

The  second method  o f  so lut ion 

As was done by Hendricks & Teller (1942), if we 
find such matrices O and 0 -1 as diagonalizing Q by 
the similarity transformation 

OQO-I=Q0 where (Q0)uv=YvC~uv 

then Bin= spur VFQ m in equation (1) becomes 
R 

Bm= spur VFQ m = 2; (OVFO-1)vvy m 
v = l  

where yv is the vth root of a characteristic equation 

det 0 , I - Q ) = 0 .  (20) 
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Hendricks & Teller calculated all elements in 0 
and 0 -1 in their example of graphite but this procedure 
is laborious. In practice, however, it is unnecessary 
to find them because if we put (OVFO-O.,  = 6~, 

R 

Bin= 27 bvY m (21) 
v = l  

and b~ can be obtained by solving a set of simultaneous 
equations 

b~+ b2+ . . . .  + ba=Bo = spurVF 
ylb~+ y2b2+ . . . .  + yaba=B~ =spurVFQ 

• 

y~-'b~ +y~-~b2 + . . . .  +y~- 'b~  = Bn-~ = spur VFQ R-'. 
(22) 

Finally equation (1) becomes 

R N - - l  

I(~o)=NBo+ Z b~ 27 (N-m)ym+conj.=NO(~o)+ H(~o) 
v = l  m = l  (23a) 

(236) 
f D(~o)=D'(~o)+conj.-Bo 

R by 
D'(~o) = 2 (23e) 

v=l 1 - y v  
R b~y~(y2~/_ 1) 

H(~o) = 2; +conj.  (23d) 
v=t (1 - yv) z 

Since yv and b v are generally complex numbers, they 
are conveniently put in the forms 

yv=Y~oei6v and bv=bvo eip~ (24) 

where Yvo and bvo are absolute values of y. and b v, 
R 

respectively. By noting that Bo= 27 b~o cos Q,, we can 
v = l  

express equations (23b) and (23d) as 

R (25a) 
H(~o)= Y, bvo(H~ D cos Q~+H~ ) sin Qv) 

v = l  

where 
Dv(~o) = (1 -Y~o) cos ~.-2yvo sin J~ sin ~v (25b) 

1 +Pavo- 2yvo cos 8v 

H(vD(~o) = 2yvO[ {2 yvO-- (1 + YZvO ) cos 6v}(1--)'v0 COS NOv) 

- ( 1  -y2~o) sin J,  sin NOd 

× (1 + ~ o -  2y~o cos j~)-2. 

H~)(~o)=2y,,o[ff~{2y~o-(1 +yZ~o ) cos Jr} sin NOv 

+(1-y2,,o) sin J,(1-ff~o cos NOv)] 

× (1 +.vZ~- 2y~ cos 63 -2 , 
(25c) 

where ~0 is implicitly included on the right-hand sides 
through yv and bv. When equation (20) has equal roots, 
equation (82) in the Appendix should be used. 

Similarly, for the cases of equal thickness and dis- 
placement stacking faults, the corresponding equations 
are as follows. 

The case of  equal thickness 

Characteristic equation" 

det ( x l -  P) = 0  (26) 

Simultaneous equations for d~= (OVFO-1)vv: 

dl + d2 + . . . .  + dR = J0 = spur VF 
xldl+ xzdz+ . . . .  + xRda=J1 = s p u r V F P  

. . . . .  

• 

R-x R-1 x g - l d a = j a _ l = s p u r  VFPR-1 xa dl + x2 d2 + . . . .  + 
(27) 

x ,=  x~oet~, , d~ = dvoe~Ov (28) 

Intensity equation: 
R N - - 1  

I(~o) = NJo + Z dv Z ( N -  rn)x'~e -*m* + conj. 
~=l m=~ =ND(~o)+H(~o) (29a) 

] D(~o)= D'(~o) + conj. - Jo 

R dvei~, (29b) 
D'(~o) = ~ 2;=1 e tv - Xv 

R d~xv(x~_e,N~o) 
H(~0)= 27 e-l(N-O*+conj. (29c) 

v=i (e*~- x v) z 

D(~o)= 27 dvoD.(~o ) 
v = l  

R 

H(~p) = Z d~o(H ~) cos 0~ + H~ ) sin 0~) (30a) 
v = l  

where 

Ov(fp) = (1 -x{o) cos Ov+2X~o sin (~P-Jv) sin Qv (30b) 
1 + x~o- 2Xvo cos (~0- 6v) 

H~)(~o)=2Xvo[{Zx~o-(1 + X2vo) cos (~0- 6v) } 

× {1--x~ cos N(~p- Jr) } 

( 1 - ~ o )  sin (~o- Jv) sin N (~o- 6~)] 

{ 1 +  2 Xvo- 2Xvo cos (~o - 6~)} -2 X 

H~2)(~o) = _ 
× 

× 

× 

(30c) 
2Xvo[X{{2X.o- (l + Xv2o) cos 4)} 
sin N(~o-6v)+(1-x[o ) sin (~0-6v) 

{1-XvO cos U(~o- Or)}] 

{1 + Xv2o- 2Xvo cos (~0- 6,)} -z . 

As can be seen by comparing equations (29a)and 
(23a), if ~0 on the right hand sides of equations (30b) 
and (30c) is put equal to 0, then equations (25b) and 
(25c) are formally obtained by replacing X,o by Yvo. 
When equation (26) has equal roots, equation (84) 
in the Appendix should be used. 
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The case o f  displacement stacking faults 

All equations with c (for d) and T (for J)  (31) 

which correspond to those from (26) to (30c) except 
(29a). The corresponding equation to (29a) is 

R N--1  

I(~o)= VoV~ {N + • c, ,F, (N-m)xv~e-~m~° +conj.} 
v = l  m = l  

= VoVg (ND(qO+ H((,o)} (32) 

When the characteristic equation has equal roots, 
equation (85) in the Appendix should be used. 

T h e  th ird  m e t h o d  o f  s o l u t i o n  

Using the relations between the roots and the coeffi- 
cients of the characteristic equation, Gevers (1954a) 
reduced, in the case of displacement stacking faults, 
the diffuse term D(~0) to a single formula in which un- 
known Xv'S and G's were eliminated. The same proced- 
ure is found to be available even for the general case 
of different thickness. 

The left hand side of the characteristic equation 
(20) is expanded with respect to y as 

R R 

d e t ( y l - Q ) =  2~ anyR-n=F(y )=  11(y -y~)  (33) 
n = 0  v = l  

where a0 = 1. I f f , (y)  is defined as 

f i ( y )=  F(y) n - ,  - y, k~OyR-~-I 
Y-Y~ .=o 

where k(o ~) = 1, then where k(o~) = 1, then 
k(v)  ~ ~ n - m  n amYv 

m = 0  

and hence 
F(y) R-1 

- -  ~' ( ~'-m.Yv" ,,n--m~,,R-n-ll.v . (34) 
f i ( Y ) -  (Y-Yv)  ,=0 m = 0  

By the use of equations (33), (34) and (21), D'(~o)in 
(23c) and H(~0) in (23d) can be transformed as follows" 

R R - - I  R 

bvf~(1 ) X ~, am Z, bvy n-m 
R by v=l . = 0  m = 0  v = l  

D'(q~) = 1~ - - -  
v=~ 1 - y v  F(1) det ( l - Q )  

R--1  

~, ~ amBn-m 
. ' .  D,(~0) = n=O m = 0  (35) 

det (1-  Q) 
N--1  

R b~y~(y~- 1) R -b~y~ Y, y~ 
H(~0)= 2~ + conj. = I; ~=o 

v=l (1-Yv) 2 v=l 1 - y v  

- 1  R N- -1  

- ~ bvYv( ,~ yI)f~(1) + conj. + conj. F(1) v=l s=o 

N R- -1  n 

- 1 ~ ~, m~,=gmBn-m+s. (36) H(~0)= det ( l - Q )  ~=~ .=o 

Equation (35) can be shown to be the same as equation 
(15a)*. 

These equations do not involve unknown quantities 
such as y~ and by and hence it is unnecessary to solve 
both the characteristic equation and the simultaneous 
equation as was suggested in our preliminary report 
(Kakinoki & Komura, 1962). Equation (35) is found 
to hold also when the characteristic equation has equal 
roots (e.g. (88) in the Appendix). 

If we put 

An .= ~ amBn-m = ~ an-mBm, (37) 
m = 0  m = 0  

then 

A0 = Bo 
R R 

and A_~ = 2 am ~ bvYv R-m 
m = 0  v = l  

R 

= 2bvF(yv)=O.  (38) 
v = l  

Therefore the diffuse term D(cp)=D'(~o)+conj.-Bo is 
rewritten 

R--1  R R R 

~, amAn + c o n j . -  Bo ~, ~, ana*m 
D(~0) = n = o m=0 n=0 m=0 (39) 

R R 

2 Y, ana*m 
n = 0  m = 0  

or, in another form, 
R--1  

Do + ~ Dv + conj. 
D(~o) = p=l (40t R 

Co + ~ Cv+conj .  
p = l  

where 
R R--p 

* I; * (41a) C v = ~, an-van = anan+ v 
n=p n=o 

R R--1 

a,, A n-v + ~ an-vA*n - CvBo • (41 b) D r =  * 
n =p n =p 

The following formula is convenient for the calculation 
of Dr" 

R - - l - - p  R 

D v= • anEn+v~where Eq= • a*Bm-q (41c) 
n=O m = 0  

with 

E R = A ~ = 0 ,  B - n = B  * ,  
R 

BR = -- ~, amBR-m. 
m =  1 

(41d) 

Ev's and Dp's for some values of R are listed below: 

R--I  n R = I  R - - l - - m  R--1 
* Z 2Y a m B n - m  = 27 am Z spur VFQ n = Z am spur VF (1 

n = 0  m = 0  m = 0  n = 0  m = O  

1 R--1 R--1 R 
- - Q n - m ) ( l - Q ) - l -  { s p u r V F N  X a m - -  Z am 

d e t ( l - Q )  m = 0  m = 0  v = l  

1 
x (ONVFO-1)vvYv R-m} - [spur VFN {det (1 - Q) - det(l- Q) 

R 
an} -- 27 (ONVFO-I)vv(0- aR)] = spurVFN. 

v = l  
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R = 2  
E~ = B~ + a~ Bo + a~ B~ 
Eo = Bo + a~ B1 + a~ BE = (1 -- aza~ )Bo + (a~ -- a~a~) BI. 

(42a) 

D1 =E~ 
Do=Eo+a~Ex=a~B~ +conj.  +(1 +a~a~-a2a~)Bo. 

(426) 
R = 3  

.Ez=B ~ + a~ B~ + a~ Bo + a~ Bx 

ex = + ar + + 

Eo=Bo+ * * * = a~ Ba+a2Bz+a3 B3 (1-a3a~)Bo 

+(a'~-aza'~)Bx+(a~-a~a~)B2 . (43a) 

D2 =E2 

D1 = E~ + a~Ez 

Do = Eo + axEx + a2E2 

=a2B~ +conj.  +(al +a2a~)B~ +conj.  

+(1 +ala~ +a2a~-a3a~)Bo. (43b) 

1 t=4  
* * * * * * 

E3=B~ +a 1B~ +a2B 1 +a3Bo+aaB 1 

E2=B~ +a 1B 1 +a2Bo+a~B1 +a4B2 
EI = B~ + aT Bo + a~ Bt + a~ B2 + a,~ B3 

Eo= Bo + aT Bt + a~ B2 + a~ B3 + aZ B4 

= ( 1  - a4aDBo + (a? - a3aZ)B 1 

+(a~-a2a~)B2+(a~-axaZ)B 3 . (44a) 

D 3  = E 3  

D2 = E2 + axE3 

Dt = Et + a~E2 + a2E3 

Do = Eo + a~E1 + a2E2 + a3E3 

=a3B~ +conj.  + (a2 + a3aT)B~ +conj.  

+ (al + aza~ + a3a~)B1 + conj. 

+(1 +a~a~ +a2a~ +a3a~-a4a~)Bo . (44b) 

For the case of equal thickness, corresponding 
equations are similarly calculated to be 

R-- I  

Z e -ine ~ amJn-m 
D'((0) = .=0 m = 0  R (45) 

.~, ane-~n~, 
n = 0  

R--1 

Do + ~, D~oe ~ve + conj. 
p=l (46) D(~o) = R 

Co + 2; Cve~r~' + conj. 
p = l  

where an's are the coefficients in the expansion 

R R 

det ( x l -  P) = 2; anx R-n = II ( x -  Xv) (47) 
n=O v = l  

and Bn in the corresponding equations should be 
replaced by .In. 

For the case of displacement stacking faults, all 
these equations hold if .In is replaced by Tn. 

Fourier transformation 

In the present paper the lateral size of the crystal is 
assumed to be so large that I(~0) has not any appreci- 
able value outside ~ = h  and r /=k  where h and k are 
integers. Thus I(~0) is a function of h and k through V. 
In the case of displacement stacking faults a function 
Io(hktp) is defined as 

I (hk~)  
Io(hk~)-  NVoV~ 

= 1 + 2; 1 - e-im~Tm (hk) + conj. (48) 
m = l  

By Fourier transformation Tm(hk) is given by 

if:0 Tm(hk)= ( 1 - m / N )  2re (hk~°)e~m~'d~° 

1 1 6-- 
(1 - re~N) ~o °(hk()e2'~'m¢d( 

So',0  To(hk)= 1= hk~)d( (49) 

in which, when m ~ N, m/N can be neglected. On the 
other hand 

R R 

Tm(hk) = spur ~FP m = 2; 2; ~eT(Fpm)ij 
i = l j = l  

R R 

=2; ~, A~']') exp [-2rci{(u~-u,)h+(v~-v,)k)] (50) 
i = l j = l  

where 
R R R 

A~°=(Fpm)tJ= 2; 2; . . . . . .  2;f~PtnlPnan2 . . . .  Pnm--lj, 
.1=1.2=1 "m-1=1 (51) 

and this is the probability of finding two layers of i 
and j at the tth and ( t+m) th  positions respectively. 

As was done by Zachariasen (1947), Wm(uv) is 
defined as the probability of finding two layers separ- 
ated by m layers such that the relative displacement 
of the origin of the layer at the ( t+m)th  position to 
the origin of the layer at the t th position is given by 
(ua + vb + me). Then Wm(uv) is the three-dimensional 
Patterson function with respect to the distribution of 
origins of layers. Since Wm(uv) is periodic with respect 
to u and v, it can be expanded by a Fourier series 
such as 

OO 

Wm(uv)= 2; 2; coff,) exp {2zri(hu + kv) } (52) 
h k 

- - 0 0  

where co~)= 1 because of the normalization condition 
of Wm(uv). By the use of Wm(uv), Tm(hk) is generally 
expressed 
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ilf 1 Tm(hk)= Wm(uv) exp {-2rci(hu+kv)}dudv.(53)  
0 

Substituting equation (52) in equation (53), we obtain 

co (m) Tm(hk) and o)(0'g ) Tm(00)=l (54) hk = ~ , 

because, when h = 0  and k = 0 ,  e~= 1 and ~ = M  and 
hence 

Tm(O0) = spur MFP m = spur HP  m = spur H = 1 

from equation (12). Therefore 

Wm(uv)=~, r, Tm(hk) exp {2rci(hu+kv)} (55) 
h k 

- -  oo 

where Tm(hk) can be obtained from the observed 
intensity by equation (49), at least when m < N. 

Substituting equation (50) in equation (55), we can 
calculate 

R R A~ n) oo 
W m ( u V )  = ~, ~-, ~, T, exp [2rci ( h ( u -  u l -  u,) 

i = l  j = l  h k 
-~o +k(v-v~-vO}] 

oo R R 

= T, ~, { T, T, A ~ T ) 6 ( u - u j - u i - p ) J ( v - v j - v ~ - q ) } ,  
P--ooq i=1 j=~ (56) 

where p and q are integers and J(x) is the delta function 
which comes from 

exp (2rcihx)= ~ J ( x - p )  . 
h= --oo p =  --oo 

Equation (56) shows the mathematical expression of 
the definition of Wm(uv) for the case of displacement 
stacking faults. 

Reduction in the order of matrices 

In some special problems the matrices used above 
have a special symmetry with respect to their elements. 
For example, as was shown by Kakinoki & Komura 
(1954b) and Komura (1962) and will be generally 
discussed in a later article, in the case of displacement 
stacking faults between cubic and hexagonal close- 
packed structures, e, F and P can be expressed as 

E~ 
(W) 

eM M e*M , F=½ W . 
t*M eM M W 

p =  
0 P1 P2 ) 

P2 0 P1 • 
P1 P2 0 (57) 

As a result 

spur eFP m= spur H(SPlq-e*P2) m , H = M W .  (58) 

In this expression the order of the matrices M, W, H, 
Px and P2 is a third of that of e, F and P. In such a 
case it is convenient to use 

det ( x l -  ePx - e ' P 2 )  = 0 (characteristic equation) (59) 
R/3 

2 Cv xm =Tm = spur H(eP1 + e'P2) m 
v=l 

(simultaneous equations) (60) 

where Cv=(OHO-1), v instead of equations (26) and 
(27). Thus, when the matrices have some special sym- 
metry, it is better to apply the method of solution 
described above to the problem after reducing the 
matrices to those having lower order. 

The fact that such a reduction can be achieved is 
due to the fact that, as is well known, not the absolute 
but the relative displacement between any two layers 
contributes to the diffracted intensity. This was inde- 
pendently pointed out also by Allegra (1961, 1964). 

Consider the case in which there are six kinds of 
layer, 

V,~ = Vl , Vb= V:* , Vc = V: 
V A ~ - - V 2 ,  V B = V 2  e *  , V c = V 2  ~ (61) 

where 
e = e ia and A = 2n(h -  k)/3 (62) 

as in the example of Komura (1962) and where the 
continuing probabilities, when s = 2, are given by: 

c B b C a C c A b A a B 
a a A A b b B B c c C C 

c a  

Ba 
bA 
CA 

0~2 

O~ 3 

O~ 4 

1 - -  O~ 1 

1 - t ~  2 
1 -c~3 
1 - o c  4 

ab 
Cb 
cB 
A B  

b ¢  

Ac 
aC 
BC 

1 - o~ 1 

1 - a z  
1 - -  O~ 3 

1 - oc 4 

0~2 

oc 3 

0~4 

1 - -  O~ 1 

1 - o~ 2 

1 - 0 ~  3 

1 - 0 ~  4 

0C1 
~2 

Then 

0 Pl P2 ) 
= P2 0 Pl = P .  

Pl P2 0 12 

V =  
V ~*V 8V ) 

~V V ~*V 
g*v ev v 12 

~.=~. 

V - ~  

VTVl v f z l  vTz2 v fz2  
( V~Vl vTv~ v';v~ v~v~ ) 

v~v, v~v, v~v~ v~v~ 
v~v, v~v, v~v2 v~v, 4 

f 12 J~f4 4 

0~3 
~4 

(63) 

(64) 
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Q = ~ P .  

~ =  

d~ = ( e-i~°l 
e-i~t 

,)12 
e-i(°2 t 

e-i~2 4 

In such a case, similarly to equation (58), 
spur VFQ m = spur vf(ed~p~ + e*d~p2) m = spur vfQ 'm (65) 
where 

ale-i~l (1 - (zl)e -i¢3 

(1 -- ~3)e -i~2 ~3 e-i¢4 

(1 -- ~4)e -/¢2 0~4e-i¢4 4 
(66) 

and 

~l----(pl--Zl , ¢2=(P2-~-z~ , 

Since v can be factored as 

¢ 3  = ~ 1  "31- Z] , ¢ 4  = (/92 - -  Z] . 

(67) 

v; 
v; 

V ~  

1 1 1 1  V1 
) ( 1 1 1 1 ) (  v1 ) 

1 1 1 1  V2 
1 1 1 1  v2 

= S ' M S  (put) (68) 

if we define a row vector V whose elements are /I1, VI, 
V2, V2 and a column vector V* whose elements are 
V~', V~', V~, V~ then 

r 

spur vfQ 'm = spur MSfQ'mS * =VfQ'mV * (69) 

which is the same as the result obtained by Allegra 
(1961, 1963). He derived equation (69) with new Q' 
without considering the symmetry character of matrices 
but directly from the fact that 

the relative displacement between 

ca & ab is e*= e -ia 

ab & bc is e * =  e -ia 

bc & ca is e * = e  -iA (70) 

which are the same and the fact that the intensity con- 
tribution from the pair of 

ca & ab_ is ( V 1 )e-i~l (VI~*) * =  V 1V~e-i(~'l -~) 

a b 

a_b & bc is (Vle*)e-l~l ( Vie)* = V1V~e -i(q'-1"~) 

b c 

bc & ca is ( Vle)e-l~'1( V 1 ) * =  V1V~e-~(q'l -~) (71) 

C a 

which are the same. Such a new defini t ion of  Q '  is 
explicitly presented by Allegra (1961, 1963) but equi- 
valent to equation (58). 

Another merit of the new definition of Q' is as 
follows" If ¢1 and ¢2 in equation (66) are defined, 
differently from equation (67), as 

¢ 1 =  I~/1 , ¢ 2 =  ~/2-3v A ' , ¢ 3  = ~/ / i -~-Z]  ' ,  ¢ 4 =  ~//2 

~ 1 = M i ~ ' 0 ,  ~2 = M2~Pto , 

with 

V1 = sin zcMi(/sin rc~ and 

A' = hrc, krc or (h + k)rc 

(72a) 

V2 = sin rcM2(Isin re(, 
(72b) 

[__J___! 

~ 1  - -  - 3 ~ 2  

', 2 ' i 
L . . . . . .  

121 
L / ' l l  
L___t_i 

,, 
,,____2__j 

2 1 - a a t  L__t__i 

2 1 - -  a 4 

l 

, 2 
i 

1 - - 0 [  1 

I - - a  2 

~ = ~ ,~+A '  

i 
' 2 
t. . . . . . . . .  

(X 3 • 

t & ° ~ 2  

~ 4  Y 

Fig. 1. A kind of anti-phase domain structure. 1 consists of M1 layers and 2 consists of M2 layers. The Reichweite s=  2. 
The broken lines show the antecedent layers and the thick arrows show the relative displacements between two successive 
layers. ~'0, ~'1 and  ~'2 are perpendicular phase shifts due to the thicknesses of one layer, M1 layers and M2 layers respec- 
tively. A is the parallel phase shift due to anti-phase. 
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then the intensity equation expressed in terms of 
V1, V2, ~bl, ~b2 should be the same both for the former 
and the latter examples. The latter case corresponds 
to the problem of some kinds of antiphase domain 
structure as shown in Fig. 1. Thus there are several 
ways of separating ~b into the perpendicular part 
~0 and the parallel part A, and the same type of 
intensity equation is applicable to the different pro- 
blems so long as the types of matrices are the same. 

The Q(n) defined by Hendricks & Teller (1942) is 
similar in its form to equation (66) but in their case 
A due to the parallel displacement was not considered. 

Further remarks 

The three types of general method of solution mention- 
ed above should be applied to the intensity equation 
only after the order of matrices used has been reduced 
either by the consideration of symmetry character 
involved or by the new definition of Q'. 

In the second method of solution, the diffuse term 
D(~0) is expressed by a sum of v components of Dv(~0)'s 
and hence it is convenient for us to know which para- 
meter contributes to which part of the diffuse maxima. 
But the more the order of matrices increases, the more 
difficult is it to solve both the characteristic equation 
and the set of simultaneous equations. Even when it 
is easy to solve them, if xv and Cv are complicated, 
it is often difficult to express them in the form of 
equation (28). In such a case the third method is 
better because it is unnecessary to solve both equations• 

Even when the characteristic equation has equal 
roots, equations (35), (40), (45) and (46) can be shown 
to hold (See Appendix). 

The term 'Reichweite' may suggest that the inter- 
layer force has an appreciable effect on the s neigh- 
bours. This may or may not be true. So far as diffract- 
ion analysis is concerned, an appropriate interpretation 
of the Reichweite is that it is only a parameter to 
limit the number of configurations by which the ob- 
served diffuse intensity can be well explained. What 
kind of relation exists between the Reichweite and the 
range of interlayer force is another problem, which 
may be difficult to solve. 

Examples dealt with by the three methods of 
solution will be reported successively in subsequent 
papers for problems such as that of the displacement 
stacking faults between cubic and hexagonal close- 
packed structures, that between modified close-packed 
structures (Laves phase, some kinds of martensitic 
transformation), some kinds of anti-phase domain 
structure, minerals, etc. 

APPENDIX 

When the characteristic equation has t v equal roots, 
it is given by 

F ( x ) = / l ( x - X v )  t~ =0  where ~ t ~ = R .  (73) 
v=l v=l 

In such a case, OPO - l = P 0  is generally expressed by 
Jordan's normal form* as 

/ Pl 
P2 

Po = 
\ 

0 

Q x,,1 
xv 1 

with pv -- 

0 

If O~FO -1 is expressed 

O g F O - l =  ( 

o) 
Pa R 

• 0 ) .  

".1 
Xv Iv 

(74) 

v~ ~, vT) . . . . . .  vl °) ) 
v?, . . . . . .  

v~) v~) . . . . . .  v~ ~) R 
where v~ ) is a rectangular matrix with t.  rows and t u 
columns, 

Tm = spur eFP m = ,~ spur _vv(V)n m-~_, - ~ T(m v) (75) 
v = l  v = l  

with T~ ) = spur v(V)n m 
- - F  f f 'F  " 

When Pv is put in the form (01 0) 
01 

pv=x~l+uv with u~= ".. (76) 
• . 1 

0 0 t~ 

where the order of I and u, is tv, then 

m 
r n  _ _  t "  ...m-nl,n 

Pv - -  ~' m ' ~ n . ~ v  Uv 
n = 0  

and hence 

T~ ) = 

r n  

~, ,~(n) ~ ..m--n for m < t v -  2 t-  v m ~ . - - ' n . a ,v  

n=O 
t v -- 1 

~, .~(n) t "  ~ .m--n for m > tv - 1 
u v m ~- - -n - -xv  

n=O 

(77) 

where 
< t v -  1 

-v -~ (78) 
c~ ") = s p u r  v (v)nn for n _ 

0 for n > t  v 

since ut~, = 0. Equation (77) is equivalent to equation 
(5) in our preliminary report (Kakinoki & Komura, 

1962) when a =  1 and tl = 3 and Tm = ~ T ~  ) is equiv- 
v=l 

alent to equation (8) in the paper. Thus 

* Even when some 1 elements in pv are 0, the procedure 
described below is applicable. 

A C 19 -- 10 
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N--1  
~, ( N -  m)e-~m~°Tm 

m = 0  
a tv--1 N--1 

_ ~, ~. c~.) ~ ( N _ . - ,  ," . . , . - . , , -~m~ - -  rn)m,~n.~v ,. 
v = l  n = 0  m=n 

iv-1 u-1  m ( m - -  1) . . . . . .  ( m - n +  1) 
--  Y, Y, ~(n) Y, ( N - m )  
- -  { . , i t  

v = l  n = 0  m=n H.I 

tv--I 1 (~n N--1 
x x m - n e  -~m~= ~ ~ c (n)It - -  ~ . Z (N- -m)xme  -~m~ 

v = l  n = 0  lq. ] GX~ m=O 

t i t - - I  1 c ~n [ N 
~ ~(n) 
Z, l." v / It=i .=o n. ~ 1 - x ~ e - ~  

X v e - i , ( x ~ e - i N ~ - -  1) 
~ = Z (ND'~ + H: )  

(1 - xite-*~°) 2 ' v= l 
where 

t v -  1 e w 

• tv--1 
Hit(~o) = Y, %~(,o 

n = 0  s = 0  

(79) 

(1 + n -  s){N+~ C~xy + l--se-~(N-1)q~--(Xv~sO + fi~l)e~} 
× 

( e ~ -  Xv)n-s+2 

Finally I(qg) can be rewritten 

I (~)  = Vo V~ {ND((o) + H ((o) } 

{ D(~) = ~ D;(9) + c o n j . -  To 
v=~ (8o) 

H ( ~ ) =  .~ H ; ( ~ ) + c o n j .  
I t= l  

For  the case of different thickness, as mentioned 
before, ~ has only to be put  equal to 0 and hence, 
when a =  1 and tit--3, D(f)  becomes 

/ ci°' 4 '  cl ~) } 
D(~p) = (T -z -~  + (l__Xl) 2 + (l__Xl)---------------- ~ + c o n j . -  B0 

which is the same as equation (6) in our preliminary 
report  (Kakinoki  & Komura ,  1962). 

With equations (77) and (79), equation (80) can be 
calculated for the three cases as follows: 
In the case of different thickness: 

cvCn) _+ b$n) = b~) e~a~ (n), q __> 0 and xit ---> yit =Yvo e~a" 

,~ ~ ..m--nl~(n) for m < tv -- 2 
a m  = ~ B ~ ) ,  B ~ ) =  n=O m~-'n.rv e, it _ 

v = l  tv--I 
r~ .,m-n~<.) for m > tv l fit, "--" n ) '  V Uv - -  

n = 0  

(81) 

D((o) = Z / t,(o) (1 - Y~o) cos ~o)_  2yit ° sin 0it sin ~o) 
v = l  (~ 'v0 1 + ~ o - 2 Y v o  cos 6 v 

1 + n  

tv-I X (--  1)~+nCsY~o cos(SOv-~(v n)) I 
+ 2; 2b~  ~=o . (82) ! 

n=l (1 +Y2vo-2yvo cos 5~) x+n 

In the case of equal thickness" 

c(,O__~d(,,)-- d~) eiPv (n), and X v = Xvoei6v 

~ mCn ~;m-nd('O for m < - 2 tv 
Jm= ~ s~), .l,v)= .=o 

~ m  I tv-- 1 
v = l  [ 2~ m C n  --va'm-nd(n)-v for m >  t ~ -  1 

I I = 0  

(83) 

,o) sin ((o- ~v) sin Q~) D(~o) = 2~ [,/(o) (1 - X~o ) cos 0v + 2X~o 
L ~v° ~ 2X~o cos (~0 6~) ~=a 1 + X v o -  - 

l + n  

tv--1 ~' (-1)Sl+nCsx~voC°S{(n-s)~+S3v-O~n)}] 
+ Z 2d~  ) ~=o 

n=l {1 + X 2 0 - - 2 X v o  COS ( ~ - -  ~ v ) )  l + n  

(84) 
In the case of displacement stacking faults: 

All corresponding equations with e (for d) and T 
(for J )  to those given above. (85) 

,~ Dv(~0 ) in equation (80) can be arranged in a single 
v = l  

form as follows" 
Equat ion (73) is expanded with respect to x as 

R 
F(x)  = f l  ( x - x . ) t .  = Z anx R-n = 0 (86) 

v = l  n = 0  

and f<vq)(x) is defined as 

F ( x )  R--q 
- _ _  - ~ b~ ~) xR-q- ,  f ~ ) ( x )  ( x - x ~ ) q  ~=o 

R--q s 
= ~ (~,s-m+q-lCq-1 a m  x s v - m ) x  R - q - s  • (87) 

s = 0 m = 0  

By the use of these relations, ~ D~ (~o) can be transform- 
ed as follows" v= l 

t ~r tv - 1 c(vn)ei~ 
Dv((a)= ~, Y, 

v=l v=l n = 0  (el~O--Xv)l+n 

tv-1 
e l~ Z c~")(e ~ -  Xv)tV -~-~ 

= 2~ n=0 
v= 1 (ei~ - Xv)t v 

et~ a t v -  1 
- -  ~ 2 /,(n) f(n-l-1) (#~) 

~ y  . /  It 
F(e i~) v=l .=o 

eiR~ a tv--1 R--n--1 
~. Y. c~ ~) ~, e -"s+n)  ~ ~ s - m + n C ~  am ~ - m  

F(e ~)  v= l n=o s=o m=O 

eiRO, a tv--1 R--n--1 R-- l - -n--q  
2; -v c<n) 2; a+nCn x~v .~ ame -~tm+n+q)~ 

F(e ~)  v=l .=o q=o m=o 

e~R~ ~ {t,,~2 /R-l:ame_i(m+r,~\  r 
F(e  i~) ~=1 ~ = o  = ) n=Or'~(n) f'~ ...r--n 

R--1 
+ Y, 

r=tv--1 

R-- l - - r  \ tv--1 } 

m~O= ame-i(m+r)~) n=oZ C~' rCn x;  -n  
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eiR~ R-I i/R--l--r ) 

F(e w) ,2=o ~mZ'o v=l~ z(rv)" 

,~, amTn-m e -~'n~° 
m D ; ( ~ )  = , ,=o 

• " R 

v=l ~, an e -~n~° 
n=O 

which is equivalent to equations (35) and (45). 

(88) 
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Ant i f e r romagne t i sm in nickel orthosil icate*.  By R. NEWNHAM, R. SANTORO, J. FANG t and S. NOMURA~:, Electrical 
Engineering Dept., Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A. 

(Received 24 November 1964) 

Nickel orthosilicate, Ni2SiO4, is isomorphous with the min- 
eral olivine. Polycrystalline specimens were prepared from 
sodium orthosilicate and nickel nitrate. After the compo- 
nents were dissolved separately in distilled water, the ortho- 
silicate solution was slowly added to the nitrate solution, 
yielding a hydrated nickel silicate precipitate. The precipi- 
tate was filtered and washed, and then fired at 1400°C 
for 24 hours to give NizSiO4. Least-squares refinement of 
high-angle X-ray diffractometer data gave the lattice param- 
eters a =  10.121_+0.005, b=5.915_+0.002, c=4.727_+ 
0.002 A. The space group is Pnma with four formula-units 
per unit cell. 

A vibrating-sample magnetometer was used to measure 
the magnetic susceptibility of Ni2SiO4. As shown in Fig. 1, 
the susceptibility follows a Curie-Weiss law above 60°K, 
with O = 7 °K and pelf = 3"15 ttn. Kondo & Miyahara (1963) 
report slightly different values of - 1 4 ° K  and 3.04/~B. The 
susceptibility goes through a maximum near 34°K, indica- 
tive of a paramagnetic-antiferromagnetic transition. 

* Sponsored by Advanced Research Projects Agency under 
contract SD-90 and by the U.S. Air Force under Contract 
AF33(616)-8353. 
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:l: Present address: Physics Department, Tokyo Institute of 
Technology, Ookayama, Merguro-ku, Tokyo, Japan. 

Neutron diffraction patterns of polycrystalline Ni2SiO4 
taken above and below the N6el temperature are shown in 
Fig. 2. The nuclear intensities (Table 1) agree well with 
values calculated from the olivine coordinates (Hanke & 
Zemann, 1963), confirming the crystal structure. The mag- 
netic peaks in the low-temperature pattern cannot be in- 
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Fig. 1. The reciprocal susceptibility of Ni2SiO4 plotted as a 
function of temperature. 
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